Ankle Fusion Plating System

Surgical Technique
When Compression Counts...
Confidence with four modes of compression in one fusion system

1. Oblong Compression Hole
 For eccentric screw placement and compression.

2. Anatomic Compression Hole
 Allows lag compression through the center of the arthrodesis site for maximal compression.

3. 6.7 mm Low Profile Screws
 Arthrex® reduced the screw head and increased thread purchase, providing a superior bite. Using a 2.4 mm guide pin allows the threads to be deeper and increase pull-out by 30% in comparison to a standard AO screw.

4. Mini Joint Compressor
 Adaptable for distraction and compression of arthrodesis sites, this device facilitates joint preparation and allows for excellent compression prior to definitive fixation.
Arthrex® Ankle Fusion Plating System — AR-8970S

The titanium Ankle Fusion Plating System provides a complete solution for ankle fusion management with a comprehensive offering of anatomic specific plates available for either tibotalar or tibiotalocalcaneal arthrodesis. A variety of screw options, including locking, nonlocking, cortical, cancellous, and hybrid designs are provided to address all fixation needs. Specific instrumentation designed to help gain access to and prepare the fusion sites is included in the set for completeness. The Ankle Fusion System is developed to provide the solution to your ankle fusion fixation needs.

System Features

- Anatomically designed for use with three surgical approaches: anterior, lateral, posterior
- Four compression modes available in system
 - anatomic compression hole
 - oblong compression hole
 - Mini Joint Compressor
 - 6.7 mm Cannulated Lag Screws
- Comprehensive instrumentation for joint preparation, distraction, compression and assistance with optimal fixation
- Joint preparation instrumentation included
- Maximum fixation points within each plate
Anterior Tibiotalar Fusion Plate (TT)

The Anterior Ankle Fusion Plates are designed for use in anterior tibiotalar arthrodesis. The distal portion of the plate is anatomically contoured and side specific to provide the largest footprint and maximal number of fixation points in the talus of any fusion plate available. Holes in the distal end diverge slightly to provide better improved pull-out resistance and can accept 4.5 mm locking, nonlocking or 5.5 mm cancellous screw options. The oblong compression hole obtains compression by eccentric screw placement within the hole after distal fixation on the plate has been achieved in the talus (see diagram). The second mode of compression utilizes an anatomically placed hole within the plate with use of fixed direction drill guides resulting in the ability to place a lag screw across the arthrodesis site through the plate (see diagram).

A) Optional: Use the Arthrex® Mini Joint Distractor/Compressor device in compression mode to maximize compression at the arthrodesis site prior to plate placement.

B) Optional: Use an Arthrex 6.7 mm partially threaded cannulated screw to obtain compression across the arthrodesis site prior to plate fixation and compression.

Joint Preparation

Due to arthritic changes of the ankle a small portion of the anterior tibia may need to be removed for plate placement.

Insert FlexiGRAFT®* Demineralized Bone Graft hydrated with concentrated bone marrow aspirate to augment an ankle arthrodesis procedure.

*FlexiGRAFT is a registered trademark of LifeNet Health.
Surgical Approach: Use a standard anterior midline incision to expose the ankle joint. Prepare the joint surfaces.

Surgical Technique

1. Fixate the proper anterior plate across the ankle joint and temporarily fix in position using one BB-Tak™ in the talus and the other in the tibia.

2. Secure the plate distally in the talus using a 4.5 mm locking or nonlocking screw drilling with the 3 mm drill. Remove the talar BB-Tak and continue filling the talar holes until proper fixation is achieved. It is recommended that distal fixation is achieved in advance of proximal fixation of the oblong compression hole in the tibia.

3. Obtain initial compression across the arthrodesis site and secure tibial portion of the plate to the bone by placing a nonlocking screw eccentrically in the oblong compression hole.

4. In the anatomic lag screw hole use the compression drill sleeve (k-wire for cannulated drill bits is available) and a 3.0 mm drill bit. Overdrill with the 5.5 mm drill. Use the depth device to measure and place a 5.5 mm screw.

5. Continue to use either locking or nonlocking screws through the remaining proximal plate holes until desired fixation is achieved.
Lateral Tibiotalar Fusion Plate (TT)

The Lateral Plates are designed for use in tibiotalar arthrodesis procedures through a lateral approach. The distal portion of the plate is contoured to match the curvature of the lateral talus with a large footprint allowing four points of fixation distally. Holes in the distal end of the plate diverge slightly to provide improved pull-out resistance and can accept 4.5 mm locking, nonlocking or 5.5 mm cancellous screw options. The shaft of the plate offers two compression options. The oblong compression hole obtains compression by eccentric screw placement within the hole after distal fixation on the plate has been achieved in the talus (see diagram). The second mode of compression utilizes an anatomically placed hole within the plate with use of fixed direction drill guides resulting in the ability to place a lag screw across the arthrodesis site through the plate (see diagram).

Joint Preparation

After removing the fibula a rongeur or saw may be used to remove the bone prominence of the lateral tibia that may interfere with plate fit.

Insert FlexiGRAFT® Demineralized Bone Graft hydrated with concentrated bone marrow aspirate to augment an ankle arthrodesis procedure.

A) Optional: Use the Arthrex® Mini Joint Distractor/Compressor device in compression mode to maximize compression at the arthrodesis site prior to plate placement.

B) Optional: Use an Arthrex 6.7 mm partially threaded cannulated screw to obtain compression across the arthrodesis site prior to plate fixation and compression.

FlexiGRAFT is a registered trademark of LifeNet Health.
Surgical Approach: Use a standard lateral transfibular approach to expose the ankle joint. Prepare the joint surfaces. The fibula bone shavings may be morselized for graft if desired.

Surgical Technique

1. Secure the plate distally using a 4.5 mm locking or nonlocking screw in the talar portion of the plate by drilling with the 3 mm drill. Remove the talar BB-Tak™ and continue filling the talar holes until proper fixation is achieved. It is recommended that distal fixation is achieved in advance of placement of the oblong compression screw hole in the tibia.

2. Obtain initial compression across the arthrodesis site and secure tibial portion of the plate to the bone by placing a nonlocking screw eccentrically in the oblong compression hole.

3. In the anatomic lag screw hole use the compression drill sleeve (k-wire for cannulated drill bits is available) and 3 mm drill bit. Overdrill with the 5.5 mm drill.

4. Use the depth device to measure and place a 5.5 mm screw. Continue to use locking or nonlocking screws through the remaining proximal plate holes until desired fixation is achieved.
Lateral Tibiotalocalcaneal Fusion Plate (TTC)

The Lateral Plates are designed for use in tibiocalcaneal arthrodesis utilizing a lateral approach. The distal portion of the plate is contoured to the anatomic curvature of the talus and calcaneus while maintaining a low profile distally to minimize lateral soft tissue irritation and wound complications. Holes in the distal end diverge slightly to provide better improved pull-out resistance and can accept 4.5 mm locking, nonlocking or 5.5 mm cancellous screw options. The shaft of the plate offers two compression options. The oblong compression hole obtains compression by eccentric screw placement within the hole after distal fixation on the plate has been achieved in the talus (see diagram). The second mode of compression utilizes an anatomically placed hole within the plate with use of fixed direction drill guides resulting in the ability to place a lag screw across the arthrodesis site through the plate (see diagram).

A) Optional: Use the Arthrex® Mini Joint Distractor/Compressor device in compression mode to maximize compression at the arthrodesis site prior to plate placement.

B) Optional: Use an Arthrex 6.7 mm partially threaded cannulated screw to obtain compression across the arthrodesis site prior to plate fixation and compression.

Joint Preparation

After removing the fibula a rongeur or saw may be used to remove the bone prominence of the lateral tibia that may interfere with plate fit.

Insert FlexiGRAFT® Demineralized Bone Graft hydrated with concentrated bone marrow aspirate to augment an ankle arthrodesis procedure.

*FlexiGRAFT is a registered trademark of LifeNet Health.
Surgical Technique

Surgical Approach: Use a standard lateral transfibular approach to expose the ankle joint. Prepare the joint surfaces. The fibula bone shavings may be morselized for graft if desired.

Place the lateral plate in the proper anatomic position across the ankle joint and use the BB-Taks™ to fixate the plate to the bone. It is recommended to place one BB-Tak in the calcaneus and one in the distal tibia. Secure the plate to the bone using a nonlocking 4.5 mm screw in the talus by drilling with the 3.0 mm drill bit.

To achieve compression with the plate, drill eccentrically in the oblong compression hole in the calcaneus and place a 4.5 mm nonlocking screw.

Continue placing 4.5 mm locking or nonlocking screws in the talus and calcaneus until desired fixation is achieved.

Obtain a compression across the ankle joint by drilling eccentrically in the proximal oblong compression hole and placing a 4.5 mm nonlocking screw.

In the anatomic lag screw hole use the compression drill sleeve (k-wire for cannulated drill bits is available) and 3 mm drill bit. Overdrill with the 4.5 mm drill. Use the depth device to measure and place a 4.5 mm screw to compress the tibiotalar joint. Continue to use either locking or nonlocking screws through the remaining proximal plate holes until desired fixation is achieved.
The Posterior Plates are designed for use in ankle fusions where it is best to utilize a posterior approach because of soft tissue or bone quality concerns. The distal portion of the plate is anatomically contoured to the posterior talus and calcaneus allowing for two points of fixation in the talus and three points of fixation in the calcaneus. Holes in the distal end diverge slightly to provide improved pull-out resistance and can accept 4.5 mm locking, nonlocking or 5.5 mm cancellous screws. The shaft of the plate offers two compression options. The oblong compression hole obtains compression by eccentric screw placement within the hole after distal fixation on the plate has been achieved in the talus (see diagram). The second mode of compression utilizes an anatomically placed hole within the plate with use of fixed direction drill guides resulting in the ability to place a lag screw across the arthrodesis site through the plate (see diagram).

A) Optional: Use the Arthrex® Mini Joint Distractor/Compressor device in compression mode to maximize compression at the arthrodesis site prior to plate placement.

B) Optional: Use an Arthrex 6.7 mm partially threaded cannulated screw to obtain compression across the arthrodesis site prior to plate fixation and compression.

The Posterior Plates are designed to fit the natural anatomy of the ankle joint, however, in some situations optional removal of the posterior flare of the tibia may be necessary.

A) Optional: Use the Arthrex® Mini Joint Distractor/Compressor device in compression mode to maximize compression at the arthrodesis site prior to plate placement.

B) Optional: Use an Arthrex 6.7 mm partially threaded cannulated screw to obtain compression across the arthrodesis site prior to plate fixation and compression.

*FlexiGRAFT is a registered trademark of LifeNet Health.

Joint Preparation

The Posterior Plates are designed to fit the natural anatomy of the ankle joint, however, in some situations optional removal of the posterior flare of the tibia may be necessary.

Insert FlexiGRAFT® Demineralized Bone Graft hydrated with concentrated bone marrow aspirate to augment an ankle arthrodesis procedure.
Surgical Approach: Use a standard midline posterior approach and split the Achilles longitudinally to expose the ankle joint. Use caution to avoid injury to the posterior tibial nerve and posterior tibial artery by staying lateral to the flexor hallucis longus. Prepare the joint surfaces.

Surgical Technique

1. Place the correct plate on the tibia, talus and calcaneus placing one BB-Tak™ in the tibia and one in the calcaneus. With the plate temporarily fixated across the joint, place the first locking or nonlocking screw into one of the calcaneal holes. Remove the distal BB-Tak and install the remaining calcaneal screws.

2. Obtain initial compression across the tibiotalar and subtalar arthrodesis sites and secure tibial portion of the plate to the bone by placing a nonlocking screw eccentrically in the oblong compression hole.

3. Obtain additional compression using the lag screw hole. In the anatomic lag screw hole use the compression drill sleeve (k-wire for cannulated drill bits is available) and 3.0 mm drill bit. Overdrill with the 5.5 mm drill. Use the depth device to measure and place a 5.5 mm screw.

4. Fill the remaining holes in the talus and tibia until desired fixation is achieved.
Supporting Products

Low Profile Screw™ 6.7 mm Cannulated Lag Screws

Arthrex® reduced the screw head profile by 1 mm and increased the thread purchase, providing a superior bite. Using a 2.4 mm guide pin allows the threads to be deeper and increases pull-out by 30%* in comparison to a standard AO screw.

- **Low Profile Head** – 1 mm shorter than a traditional 6.5 mm AO screw, while still using a 3.5 mm hex driver.
- **Better Pull-out** – 30% better than a standard 6.5 mm AO screw.
- **Deeper Threads** – Using a 2.4 mm guide pin allows the threads to be deeper than a standard AO screw.
- **Self-Drilling/Tapping** – Speeds up the insertion process.
- **Assisted Targeting** – Parallel and C-ring Pin Guides enable quick and accurate placement.

Joint Preparation

Straight and curved curettes and osteotomes have been added to the ankle fusion tray to help with the removal of cartilage from the ankle and subtalar joints. These instruments are appropriately designed for the ankle and come standard in each ankle fusion tray simplifying joint preparation in the OR setting.

Mini Joint Compressor/Distractor

Adaptable for distraction and compression of arthrodesis sites, this unique device facilitates joint preparation and allows for excellent compression prior to definitive fixation. The device utilizes 1.6 mm or 2.4 mm guidewires, or 3 mm traction screws, which are included in the system.

*data on file
Technology is what sets Angel apart from the competition. Angel utilizes proprietary sensor technology and one button automation to deliver customized bone marrow concentrate (BMC). Bone marrow is a rich source of platelets, nucleated and progenitor cells. Angel is the only device that can concentrate bone marrow aspirate with adjustable cellular levels. Customization of cellular levels is necessary to reduce the number of neutrophils in BMC, which can be detrimental to bone healing.

Features and Benefits:
- Proprietary platelet sensor system
- Adjustable platelet concentrations
- Adjustable WBC concentrations
- Flexible processing volume 40-180ml
- Each processing kit can process three cycles up to 180 ml, on the same patient
- Programmable - can store up to 30 custom processing protocols
- Closed system, delivers PRP, PPP and RBCs into separate, sterile compartments

<table>
<thead>
<tr>
<th>Arthrex Angel BMC</th>
<th>Platelet Concentration (K/mL)</th>
<th>Nucleated Cell Concentration (K/mL)</th>
<th>Hematopoietic Cell Concentration (K/mL)</th>
<th>Total Neutrophil (x10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMA</td>
<td>87.7 ± 6.4</td>
<td>24.5 ± 15.6</td>
<td>0.002 ± 0.001</td>
<td>612.1</td>
</tr>
<tr>
<td>BMC</td>
<td>787.0 ± 317.6</td>
<td>240.5 ± 186.6</td>
<td>0.081 ± 0.056</td>
<td>132.9</td>
</tr>
<tr>
<td>Increase Above Baseline</td>
<td>-9x</td>
<td>-10x</td>
<td>-33x</td>
<td>↓ 30%</td>
</tr>
</tbody>
</table>

FlexiGRAFT

Demineralized Cancellous Sponges and Cortical Fiber

Allograft demineralized bone (DBM) is optimal for combination with autologous biologically active products such as concentrated bone marrow aspirate. When combined with osteogenic autologous bone marrow concentrate, FlexiGRAFT Demineralized Bone provides the necessary components for bone formation. FlexiGRAFT sponges, chips and cortical fibers provide a grafting material with excellent handling characteristics when hydrated with concentrated bone marrow aspirate. Hydrated DBM provides a scaffold that is rich in growth factors, progenitor cells and natural architecture.

*Angel is a registered trademark of Cytomedix Acquisition Company, LLC.
**FlexiGRAFT is a registered trademark of LifeNet Health.
StimuBlast®*
DBM Putty and Gel

StimuBlast provides osteoinduction and osteoconduction with optimal handling characteristics. The Reverse Phase Medium (RPM) carrier is biocompatible and allows the DBM to be moldable and packed into any defect size or shape. Due to the RPM carrier, StimuBlast DBM thickens up at body temperature and will resist irrigation. The combination of Angel® Bone Marrow Concentrate and StimuBlast DBM putty or gel creates a bone graft that has all three necessary attributes for optimized healing: osteogenic, osteonductive and osteoinductive properties.

Ordering Information

<table>
<thead>
<tr>
<th>Arthrex® Angel System</th>
<th>Part Number</th>
<th>Arthrex #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthrex Angel System</td>
<td>976000100</td>
<td>ABS-10060</td>
</tr>
<tr>
<td>Angel Bone Marrow Processing Kit</td>
<td>976000502</td>
<td>ABS-10062</td>
</tr>
<tr>
<td>Angel Blood Access Kit</td>
<td>976000502</td>
<td>ABS-10067</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cancellous Sponges</th>
<th>LifeNet Health Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cube, 8 mm x 8 mm x 8 mm</td>
<td>BL-1100-001</td>
</tr>
<tr>
<td>Cube, 10 mm x 10 mm x 10 mm</td>
<td>BL-1100-003</td>
</tr>
<tr>
<td>Cube, 12 mm x 12 mm x 12 mm</td>
<td>BL-1100-002</td>
</tr>
<tr>
<td>Strip, 10 mm x 20 mm x 2 mm</td>
<td>BL-1300-001</td>
</tr>
<tr>
<td>Strip, 15 mm x 40 mm x 2 mm</td>
<td>BL-1300-002</td>
</tr>
<tr>
<td>Strip, 20 mm x 25 mm x 6 mm</td>
<td>BL-1300-003</td>
</tr>
<tr>
<td>Strip, 10 mm x 20 mm x 8 mm</td>
<td>BL-1300-004</td>
</tr>
<tr>
<td>Chips (1 - 4 mm), 1.0 cc</td>
<td>BL-1200-001</td>
</tr>
<tr>
<td>Chips (1 - 4 mm), 2.5 cc</td>
<td>BL-1200-002</td>
</tr>
<tr>
<td>Chips (1 - 4 mm), 5 cc</td>
<td>BL-1200-003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cortical Fibers</th>
<th>LifeNet Health Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibers, 1.0 cc</td>
<td>BL-1000-001</td>
</tr>
<tr>
<td>Fibers, 2.5 cc</td>
<td>BL-1000-002</td>
</tr>
<tr>
<td>Fibers, 5 cc</td>
<td>BL-1000-003</td>
</tr>
<tr>
<td>Fibers, 10 cc</td>
<td>BL-1000-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>StimuBlast DBM Putty</th>
<th>Arthrex #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cc Putty</td>
<td>ABS-2001-01</td>
</tr>
<tr>
<td>2.55 cc Putty</td>
<td>ABS-2001-02</td>
</tr>
<tr>
<td>5 cc Putty</td>
<td>ABS-2001-05</td>
</tr>
<tr>
<td>10 cc Putty</td>
<td>ABS-2001-10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>StimuBlast DBM Gel</th>
<th>Arthrex #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cc Gel</td>
<td>ABS-2002-01</td>
</tr>
<tr>
<td>5 cc Gel</td>
<td>ABS-2002-05</td>
</tr>
<tr>
<td>10 cc Gel</td>
<td>ABS-2002-10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>StimuBlast CB DBM Putty</th>
<th>Arthrex #</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 cc Putty</td>
<td>ABS-2003-05</td>
</tr>
<tr>
<td>10 cc Putty</td>
<td>ABS-2003-10</td>
</tr>
</tbody>
</table>

* StimuBlast is a registered trademark of AlloSource
Ordering Information

Implants (not included in set, order separately):

- **Anterior Plate, Left**: AR-8970AL
- **Anterior Plate, Right**: AR-8970AR
- **Lateral Tibiotalar Plate**: AR-8967G
- **Lateral Tibiotalocalcaneal Plate**: AR-8970TT
- **Posterior Tibiotalocalcaneal Plate, Left**: AR-8970PL
- **Posterior Tibiotalocalcaneal Plate, Right**: AR-8970PR
- **Low Profile Screws, 4.5 / 5.5 mm**:
 - **Low Profile Locking Screw, 4.5 mm x 16 – 65 mm**: AR-8545L-16 – 65 mm
 - **Low Profile Screw, 4.5 mm x 16 – 65 mm**: AR-8545-16 – 65 mm
 - **Low Profile Screw, 5.5 mm x 20 – 75 mm**: AR-8555-20 – 75 mm
- **Cannulated Lag Screws:**
 - **Partially Threaded Screw, Ti, 6.7 mm x 40 – 100 mm**: AR-8967-2840 – 28100
- **Disposables: (not included in set, order separately):**
 - **BB-Tak, Large**: AR-8970-09
 - **BB-Tak, Large, Threaded**: AR-8970-09T
 - **Guidewire w/Trocip Tip, nonthreaded, 0.94” x 8”**: AR-8967K 12
 - **Guidewire w/Trocip Tip, nonthreaded, 0.94” x 12”**: AR-8967K 12
 - **Guidewire w/Trocip Tip, threaded, 0.94” x 12”**: AR-8967KT
 - **Guidewire w/Trocip Tip, .062” x 1.6 mm x 7”**: AR-8941-7

Implant:

- **Washer, Titanium, 13 mm**: AR-8967W

Anchorage Plating Set (AR-8970S):

- **Drill Bit, calibrated, 3.0 mm**: AR-8970-30
- **Drill Bit, cannulated, 3.0 mm**: AR-8970-30C
- **Drill Bit, cannulated, 4 mm**: AR-8970-40C
- **Drill Bit, 4.5 mm**: AR-8970-45
- **Drill Bit, 5.5 mm**: AR-8970-55
- **Drill Guide, Threaded, Locking, 4.5 mm**: AR-8970-01
- **Drill Guide, 3.0 / 4.5 mm**: AR-8970-02
- **Drill Guide, 4 mm / 6.7 mm**: AR-8967G
- **Drill Guide, 5.5 / 3.0 mm**: AR-8970-05
- **Depth Measuring Device, 4.5 mm / 5.5 mm**: AR-8970-07
- **Depth Device, cannulated, 6.7 mm**: AR-8967DG
- **Depth Device, Large**: AR-4167
- **Drive Shaft, T20 Hexalobe**: AR-8970-03
- **Screwdriver, T20 Hexalobe**: AR-8970-04
- **Screwdriver Handle**: AR-1999
- **Ratcheting Handle, cannulated, large AO handle, QC**: AR-8970RH
- **Bone Reduction Forceps**: AR-8943F
- **Hudson Adapter**: AR-1416
- **Hohmann Retractor, 9.5’ Long, 17 mm Pointed**: AR-9260-34
- **Guidewire Insert, 1.6 mm**: AR-8970-06
- **Cup Curette, Straight Shaft, 6 mm**: AR-8970-11
- **Cup Curette, Curved Shaft, 6 mm**: AR-8970-12
- **Cobb Elevator, 9 mm**: AR-8640
- **Small Joint Osteotome Angled Up, 217” (5.5 mm) w/handle**: AR-8650-08
- **Small Joint Osteotome Straight, 217” (5.5 mm) w/handle**: AR-8650-09
- **Small Joint Osteotome Angled Up, 472” (12 mm) w/handle**: AR-8970-13
- **Small Joint Osteotome Straight, 217” (12 mm) w/handle**: AR-8970-14
- **Screw Holding Forceps**: AR-8941F
- **Driver, cannulated, 3.5 mm Hex**: AR-8967D
- **Countersink, fixed handle, cannulated, 6.7 mm**: AR-8967CSF
- **Ankle Fusion Plating System Case**: AR-8970C

Cannulated Lag Screws:

- **Partially Threaded Screw, Ti, 6.7 mm x 40 – 100 mm**: AR-8967-2840 – 28100

Disposables:

- **BB-Tak, Large**: AR-8970-09
- **BB-Tak, Large, Threaded**: AR-8970-09T
- **Guidewire w/Trocip Tip, nonthreaded, 0.94” x 8”**: AR-8967K 12
- **Guidewire w/Trocip Tip, nonthreaded, 0.94” x 12”**: AR-8967K 12
- **Guidewire w/Trocip Tip, threaded, 0.94” x 12”**: AR-8967KT
- **Guidewire w/Trocip Tip, .062” (1.6 mm) x 7”**: AR-8941-7

© 2015, Arthrex Inc. All rights reserved. LTI-0470-EN_B